Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Applied Matrix and Tensor ­Variate Data Analysis
2016 (SpringerBriefs in Statistics)
By Toshio Sakata (Edited by)

Rating
Format
Paperback, 136 pages
Published
Japan, 1 February 2016

This book provides comprehensive reviews of recent progress in matrix variate and tensor variate data analysis from applied points of view. Matrix and tensor approaches for data analysis are known to be extremely useful for recently emerging complex and high-dimensional data in various applied fields. The reviews contained herein cover recent applications of these methods in psychology (Chap. 1), audio signals (Chap. 2) , image analysis  from tensor principal component analysis (Chap. 3), and image analysis from decomposition (Chap. 4), and genetic data (Chap. 5) . Readers will be able to understand the present status of these techniques as applicable to their own fields.  In Chapter 5 especially, a theory of tensor normal distributions, which is a basic in statistical inference, is developed, and multi-way regression, classification, clustering, and principal component analysis are exemplified under tensor normal distributions. Chapter 6 treats one-sided tests under matrix variate and tensor variate normal distributions, whose theory under multivariate normal distributions has been a popular topic in statistics since the books of Barlow et al. (1972) and Robertson et al. (1988). Chapters 1, 5, and 6 distinguish this book from ordinary engineering books on these topics.


Our Price
$120
Ships from UK Estimated delivery date: 21st Apr - 28th Apr from UK
  Include FREE SHIPPING on a Fishpond Premium Trial

Already Own It? Sell Yours
Buy Together
+
Buy together with FEM for Springs at a great price!
Buy Together
$474

Product Description

This book provides comprehensive reviews of recent progress in matrix variate and tensor variate data analysis from applied points of view. Matrix and tensor approaches for data analysis are known to be extremely useful for recently emerging complex and high-dimensional data in various applied fields. The reviews contained herein cover recent applications of these methods in psychology (Chap. 1), audio signals (Chap. 2) , image analysis  from tensor principal component analysis (Chap. 3), and image analysis from decomposition (Chap. 4), and genetic data (Chap. 5) . Readers will be able to understand the present status of these techniques as applicable to their own fields.  In Chapter 5 especially, a theory of tensor normal distributions, which is a basic in statistical inference, is developed, and multi-way regression, classification, clustering, and principal component analysis are exemplified under tensor normal distributions. Chapter 6 treats one-sided tests under matrix variate and tensor variate normal distributions, whose theory under multivariate normal distributions has been a popular topic in statistics since the books of Barlow et al. (1972) and Robertson et al. (1988). Chapters 1, 5, and 6 distinguish this book from ordinary engineering books on these topics.

Product Details
EAN
9784431553861
ISBN
443155386X
Age Range
Other Information
13 black & white illustrations, 23 colour illustrations, 3 black & white tables, 6 colour tables, biography
Dimensions
23.4 x 15.6 x 0.8 centimetres (0.25 kg)

Table of Contents

1 Three-Way Principal Component Analysis with its Applications to Psychology (Kohei Adachi).- 2 Non-negative matrix factorization and its variants for audio signal processing (Hirokazu Kameoka).- 3 Generalized Tensor PCA and its Applications to Image Analysis (Kohei Inoue).- 4 Matrix Factorization for Image Processing (Noboru Murata).- 5 Arrays Normal Model and Incomplete Array Variate Observations (Deniz Akdemir).- 6 One-sided Tests for Matrix Variate Normal Distribution (Manabu Iwasa and Toshio Sakata).

Reviews

“In its six chapters it covers a large span of methods and problems of eigenvector analysis of matrices, and many-way arrays, also known as tensors. Seven authors contribute to describing and developing these techniques for practical applications of computational statistical analysis in various fields of high-dimensional data. … This monograph can serve to lecturers, graduate students, and researchers working with theoretical methods and numerical estimations in modern multivariate statistical analysis.” (Stan Lipovetsky, Technometrics, Vol. 58 (3), August, 2016)

Show more
Review this Product
What our customers have to say
Ask a Question About this Product More...
 
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Applied Matrix and Tensor Variate Data Analysis: 2016 (SpringerBriefs in Statistics) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top