Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Artificial Intelligence and ­Machine Learning for ­Digital Pathology
State-of-the-Art and Future Challenges (Lecture Notes in Computer Science)
By Andreas Holzinger (Edited by), Randy Goebel (Edited by), Michael Mengel (Edited by), Heimo Muller (Edited by)

Rating
Format
Paperback, 328 pages
Published
Switzerland, 24 October 2020

Data driven Artificial Intelligence (AI) and Machine Learning (ML) in digital pathology, radiology, and dermatology is very promising. In specific cases, for example, Deep Learning (DL), even exceeding human performance. However, in the context of medicine it is important for a human expert to verify the outcome. Consequently, there is a need for transparency and re-traceability of state-of-the-art solutions to make them usable for ethical responsible medical decision support.
Moreover, big data is required for training, covering a wide spectrum of a variety of human diseases in different organ systems. These data sets must meet top-quality and regulatory criteria and must be well annotated for ML at patient-, sample,- and image-level. Here biobanks play a central and future role in providing large collections of high-quality well, annotated samples and data. The main challenges are finding biobanks containing ''fit-for-purpose'' samples, providing quality related meta-data, gaining access to standardized medical data and annotations, and mass scanning of whole slides including efficient data management solutions.


Show more

Seller Price
$318.13
Ships within: 5-15 days Ships within: 5-15 days
Price includes delivery.
(Excl. RD)
Sold by MIAN AND SONS
Condition: New

Fishpond Marketplace
4 copies from $318.13
Already Own It? Sell Yours
Product Description

Data driven Artificial Intelligence (AI) and Machine Learning (ML) in digital pathology, radiology, and dermatology is very promising. In specific cases, for example, Deep Learning (DL), even exceeding human performance. However, in the context of medicine it is important for a human expert to verify the outcome. Consequently, there is a need for transparency and re-traceability of state-of-the-art solutions to make them usable for ethical responsible medical decision support.
Moreover, big data is required for training, covering a wide spectrum of a variety of human diseases in different organ systems. These data sets must meet top-quality and regulatory criteria and must be well annotated for ML at patient-, sample,- and image-level. Here biobanks play a central and future role in providing large collections of high-quality well, annotated samples and data. The main challenges are finding biobanks containing ''fit-for-purpose'' samples, providing quality related meta-data, gaining access to standardized medical data and annotations, and mass scanning of whole slides including efficient data management solutions.


Show more
Product Details
EAN
9783030504014
ISBN
3030504018
Other Information
XII, 328 p.
Dimensions
23.3 x 15.4 x 2.8 centimetres (0.54 kg)

Table of Contents

Expectations of Artificial Intelligence for Pathology.- Interpretable Deep Neural Network to Predict Estrogen Receptor Status from Haematoxylin-Eosin Images.- Supporting the Donation of Health Records to Biobanks for Medical Research.- Survey of XAI in Digital Pathology.- Sample Quality as Basic Prerequisite for Data Quality: A Quality Management System for Biobanks.- Black Box Nature of Deep Learning for Digital Pathology: Beyond Quantitative to Qualitative Algorithmic Performances.- Towards a Better Understanding of the Workflows: Modeling Pathology Processes in View of Future AI Integration.- OBDEX – Open Block Data Exchange System.- Image Processing and Machine Learning Techniques for Diabetic Retinopathy Detection: A Review.- Higher Education Teaching Material on Machine Learning in the Domain of Digital Pathology.- Classification vs Deep Learning in Cancer Degree on Limited Histopathology Datasets.- Biobanks and Biobank-Based Artificial Intelligence (AI) Implementation Throughan International Lens.- HistoMapr: An Explainable AI (xAI) Platform for Computational Pathology Solutions.- Extension of the Identity Management System Mainzelliste to Reduce Runtimes for Patient Registration in Large Datasets.- Digital Image Analysis in Pathology Using DNA Stain: Contributions in Cancer Diagnostics and Development of Prognostic and Theranostic Biomarkers.- Assessment and Comparison of Colour Fidelity of Whole slide imaging scanners.- Deep Learning Methods for Mitosis Detection in Breast Cancer Histopathological Images: a Comprehensive Review.- Developments in AI and Machine Learning for Neuroimaging.

Show more
Review this Product
What our customers have to say
Ask a Question About this Product More...
 
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Artificial Intelligence and Machine Learning for Digital Pathology: State-of-the-Art and Future Challenges (Lecture Notes in Computer Science) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!

Back to top