Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Berry Phases in Electronic ­Structure Theory
Electric Polarization, Orbital Magnetization and Topological Insulators
By Vanderbilt, David (Rutgers University, New Jersey)

Rating
Format
Hardback, 394 pages
Published
United Kingdom, 1 November 2018

Over the past twenty-five years, mathematical concepts associated with geometric phases have come to occupy a central place in our modern understanding of the physics of electrons in solids. These 'Berry phases' describe the global phase acquired by a quantum state as the Hamiltonian is changed. Beginning at an elementary level, this book provides a pedagogical introduction to the important role of Berry phases and curvatures, and outlines their great influence upon many key properties of electrons in solids, including electric polarization, anomalous Hall conductivity, and the nature of the topological insulating state. It focuses on drawing connections between physical concepts and provides a solid framework for their integration, enabling researchers and students to explore and develop links to related fields. Computational examples and exercises throughout provide an added dimension to the book, giving readers the opportunity to explore the central concepts in a practical and engaging way.


Our Price
$137
Ships from Australia Estimated delivery date: 14th Apr - 17th Apr from Australia
Price includes delivery.
(Excl. RD)

Already Own It? Sell Yours
Buy Together
+
Buy together with Resistivity and Induced Polarization at a great price!
Buy Together
$287

Product Description

Over the past twenty-five years, mathematical concepts associated with geometric phases have come to occupy a central place in our modern understanding of the physics of electrons in solids. These 'Berry phases' describe the global phase acquired by a quantum state as the Hamiltonian is changed. Beginning at an elementary level, this book provides a pedagogical introduction to the important role of Berry phases and curvatures, and outlines their great influence upon many key properties of electrons in solids, including electric polarization, anomalous Hall conductivity, and the nature of the topological insulating state. It focuses on drawing connections between physical concepts and provides a solid framework for their integration, enabling researchers and students to explore and develop links to related fields. Computational examples and exercises throughout provide an added dimension to the book, giving readers the opportunity to explore the central concepts in a practical and engaging way.

Product Details
EAN
9781107157651
ISBN
110715765X
Dimensions
25.7 x 19.1 x 2 centimetres (0.53 kg)

Table of Contents

Preface; Acronyms; Introduction; 1. Invariance and quantization of charges and currents; 2. Review of electronic structure theory; 3. Berry phases and curvatures; 4. Electric polarization; 5. Topological insulators and semimetals; 6. Orbital magnetization and axion magnetoelectric coupling; Appendix A. Fourier transform conventions; Appendix B. Optimal alignment and the singular value decomposition; Appendix C. Gauge transformation of the Chern–Simons axion coupling; Appendix D. The PythTB package; References; Index.

Promotional Information

An introduction to the role of Berry phases in our modern understanding of the physics of electrons in solids.

About the Author

David Vanderbilt is Board of Governors Professor of Physics at Rutgers University, New Jersey, where he has made significant contributions to computational condensed matter physics. He is a Fellow of the American Physical Society and a member of the National Academy of Sciences, and was awarded the prestigious Rahman Prize in Computational Physics of the American Physical Society in 2006.

Reviews

'This book brings together almost forty years of progress in understanding how the wavefunctions of electrons in a crystal, and in particular their continuous evolution with momentum, determine important physical properties. David Vanderbilt is one of the creators of this field, and nearly every chapter includes topics where his contributions were decisive. In addition to its scope, one way in which this book differs from others on related topics is the clear path from physical insight, through theoretical understanding, to practical methods for specific materials. This book can be read profitably by those interested in the fundamental theory of topological phases as well as those seeking to understand modern electronic structure approaches.' Joel Moore, Chern-Simons Professor of Physics, University of California, Berkeley

'The geometric phase and related concepts provide a unified framework for describing many fundamental properties of electrons in solids, from electric polarization to quantized effects in topological materials. Readers wishing to become familiar with these notions will find David Vanderbilt's excellent book to be an invaluable resource.' Ivo Souza, University of the Basque Country, San Sebastián

'Berry phases and associated geometric and topological concepts have transformed our understanding of electronic properties. This book provides a much needed pedagogical exposition with computational instructions which will be very valuable for students and researchers in solid state physics and materials science.' Qian Niu, University of Texas

'David Vanderbilt explicates a new exciting frontier in solid state physics and materials theory, and does so in a clear and interesting to read way. Not only does he cover every nook and cranny of this new area, but in the process clearly explains the basics of electronic structure theory, such as density functional theory (DFT) and tight-binding, that will be extremely useful and important to any student of condensed matter theory. The subject of the book is how the phases of the wave functions, neglected for decades, affect important measurable properties of materials. He covers everything from the mathematical theory of geometric phases, applications to polarization and orbital magnetism, all the way to complex applications such as three-dimensional topological insulators and beyond. To be able to write about such seemingly esoteric matters in such a clear and gripping way is the mark of a great teacher. I look forward to my second reading of the book!' Ronald Cohen, Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution for Science

'For anyone who wants to learn about Berry phases in electronic structure and the exciting recent developments in topological insulators, I heartily recommend this book. David Vanderbilt is uniquely poised to present the concepts and practical developments in this field that has revolutionized our understanding of condensed matter. He has made some of the most important advances in electronic structure theory in the last twenty years, including the original work that has made Berry phases a central part the field, and he is known for lucid presentations. In this book Vanderbilt introduces the concepts in a way that is accessible to a nonexpert, with clear explanations and instructive examples, and yet he presents the material in the depth that it deserves. I recommend this book for anyone who wants to be a part of condensed matter theory in the twenty-first century or just to appreciate the basic ideas and phenomena of this exciting field.' Richard M. Martin, University of Illinois, Urbana Champaign

'This is a well-structured book which will serve admirably as a text for advanced students as well as a means for more mature readers to gain an appreciation of the recent developments in this area of activity.' K. Alan Shore, Contemporary Physics

'Its author, Rutgers University physicist David Vanderbilt, is eminently qualified for the task: he is the senior author of a large part of the research at the book's core. That literature is now fundamental knowledge for any scientist working on modern electronic structure. … The book's presentation combines mathematical rigor with illuminating discussions and examples … the ideal textbook for any special-topics course that broadly covers geometry and topology in electronic structure.' Physics Today

'… I would like to recommend this book to crystallographers, and more generally to condensed-matter physicists who wish to learn about the physics of Berry phases. The pedagogical presentation used throughout will allow careful readers to start working on the more detailed literature with a solid basis and a clear view of recent results.' Laurent Chaput, Acta Crystallographica

Show more
Review this Product
What our customers have to say
Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond Retail Limited.

Back to top