Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Estimation of Distribution ­Algorithms
A New Tool for Evolutionary Computation (Genetic Algorithms and Evolutionary Computation)
By Pedro Larranaga (Edited by), Jose A. Lozano (Edited by)

Rating
Format
Hardback, 382 pages
Other Formats Available

Paperback : $444.00

Published
Netherlands, 1 October 2001

Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is devoted to a new paradigm for evolutionary computation, named estimation of distribution algorithms (EDAs). This new class of algorithms generalizes genetic algorithms by replacing the crossover and mutation operators with learning and sampling from the probability distribution of the best individuals of the population at each iteration of the algorithm. Working in such a way, the relationships between the variables involved in the problem domain are explicitly and effectively captured and exploited.

This text constitutes the first compilation and review of the techniques and applications of this new tool for performing evolutionary computation. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is clearly divided into three parts. Part I is dedicated to the foundations of EDAs. In this part, after introducing some probabilistic graphical models - Bayesian and Gaussian networks - a review of existing EDA approaches is presented, as well as some new methods based on more flexible probabilistic graphical models. A mathematical modeling of discrete EDAs is also presented. Part II covers several applications of EDAs in some classical optimization problems: the travelling salesman problem, the job scheduling problem, and the knapsack problem. EDAs are also applied to the optimization of some well-known combinatorial and continuous functions. Part III presents the application of EDAs to solve some problems that arise in the machine learning field: feature subset selection, feature weighting in K-NN classifiers, rule induction, partial abductive inference in Bayesian networks, partitional clustering, and the search for optimal weights in artificial neural networks.

Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is a useful and interesting tool for researchers working in the field of evolutionary computation and for engineers who face real-world optimization problems. This book may also be used by graduate students and researchers in computer science.

`... I urge those who are interested in EDAs to study this well-crafted book today.' David E. Goldberg, University of Illinois Champaign-Urbana.

Show more

Our Price
$448
Ships from Australia Estimated delivery date: 30th May - 4th Jun from Australia
  Include FREE SHIPPING on a Fishpond Premium Trial

Already Own It? Sell Yours
Buy Together
+
Buy together with Towards a New Evolutionary Computation at a great price!
Buy Together
$817

Product Description

Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is devoted to a new paradigm for evolutionary computation, named estimation of distribution algorithms (EDAs). This new class of algorithms generalizes genetic algorithms by replacing the crossover and mutation operators with learning and sampling from the probability distribution of the best individuals of the population at each iteration of the algorithm. Working in such a way, the relationships between the variables involved in the problem domain are explicitly and effectively captured and exploited.

This text constitutes the first compilation and review of the techniques and applications of this new tool for performing evolutionary computation. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is clearly divided into three parts. Part I is dedicated to the foundations of EDAs. In this part, after introducing some probabilistic graphical models - Bayesian and Gaussian networks - a review of existing EDA approaches is presented, as well as some new methods based on more flexible probabilistic graphical models. A mathematical modeling of discrete EDAs is also presented. Part II covers several applications of EDAs in some classical optimization problems: the travelling salesman problem, the job scheduling problem, and the knapsack problem. EDAs are also applied to the optimization of some well-known combinatorial and continuous functions. Part III presents the application of EDAs to solve some problems that arise in the machine learning field: feature subset selection, feature weighting in K-NN classifiers, rule induction, partial abductive inference in Bayesian networks, partitional clustering, and the search for optimal weights in artificial neural networks.

Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is a useful and interesting tool for researchers working in the field of evolutionary computation and for engineers who face real-world optimization problems. This book may also be used by graduate students and researchers in computer science.

`... I urge those who are interested in EDAs to study this well-crafted book today.' David E. Goldberg, University of Illinois Champaign-Urbana.

Show more
Product Details
EAN
9780792374664
ISBN
0792374665
Other Information
1
Dimensions
24.3 x 16.4 x 3 centimetres (0.76 kg)

Table of Contents

I Foundations.- 1 An Introduction to Evolutionary Algorithms.- 2 An Introduction to Probabilistic Graphical Models.- 3 A Review on Estimation of Distribution Algorithms.- 4 Benefits of Data Clustering in Multimodal Function Optimization via EDAs.- 5 Parallel Estimation of Distribution Algorithms.- 6 Mathematical Modeling of Discrete Estimation of Distribution Algorithms.- II Optimization.- 7 An Empirical Comparison of Discrete Estimation of Distribution Algorithms.- 8 Results in Function Optimization with EDAs in Continuous Domain.- 9 Solving the 0-1 Knapsack Problem with EDAs.- 10 Solving the Traveling Salesman Problem with EDAs.- 11 EDAs Applied to the Job Shop Scheduling Problem.- 12 Solving Graph Matching with EDAs Using a Permutation-Based Representation.- III Machine Learning.- 13 Feature Subset Selection by Estimation of Distribution Algorithms.- 14 Feature Weighting for Nearest Neighbor by EDAs.- 15 Rule Induction by Estimation of Distribution Algorithms.- 16 Partial Abductive Inference in Bayesian Networks: An Empirical Comparison Between GAs and EDAs.- 17 Comparing K-Means, GAs and EDAs in Partitional Clustering.- 18 Adjusting Weights in Artificial Neural Networks using Evolutionary Algorithms.

Promotional Information

Springer Book Archives

Show more
Review this Product
What our customers have to say
Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation (Genetic Algorithms and Evolutionary Computation) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond Retail Limited.

Back to top