Paperback : $113.00
Linear algebra is an extremely versatile and useful subject. It rewards those who study it with powerful computational tools, lessons about how mathematical theory is built, examples for later study in other classes, and much more.
Functional Linear Algebra is a unique text written to address the need for a one-term linear algebra course where students have taken only calculus. It does not assume students have had a proofs course.
The text offers the following approaches:
As readers work through this book, it is important to understand the basic ideas, definitions, and computational skills. Plenty of examples and problems are provided to make sure readers can practice until the material is thoroughly grasped.
Author
Dr. Hannah Robbins is an associate professor of mathematics at Roanoke College, Salem, VA. Formerly a commutative algebraist, she now studies applications of linear algebra and assesses teaching practices in calculus. Outside the office, she enjoys hiking and playing bluegrass bass.
Show moreLinear algebra is an extremely versatile and useful subject. It rewards those who study it with powerful computational tools, lessons about how mathematical theory is built, examples for later study in other classes, and much more.
Functional Linear Algebra is a unique text written to address the need for a one-term linear algebra course where students have taken only calculus. It does not assume students have had a proofs course.
The text offers the following approaches:
As readers work through this book, it is important to understand the basic ideas, definitions, and computational skills. Plenty of examples and problems are provided to make sure readers can practice until the material is thoroughly grasped.
Author
Dr. Hannah Robbins is an associate professor of mathematics at Roanoke College, Salem, VA. Formerly a commutative algebraist, she now studies applications of linear algebra and assesses teaching practices in calculus. Outside the office, she enjoys hiking and playing bluegrass bass.
Show more0. Motivation. 1. Vectors. 1.1. Vector Operations. 1.2. Span. 1.3. Linear Independence. 2. Functions of Vectors. 2.1. Linear Functions. 2.2. Matrices. 2.3. Matrix Operations. 2.4. Matrix Vector Spaces. 2.5. Kernel and Range. 2.6. Row Reduction. 2.7. Applications of Row Reduction. 2.8. Solution Sets. 2.9. Large Matrix Computations. 2.10. Invertibility. 2.11. The Invertible Matrix Theorem. 3. Vector Spaces. 3.1. Basis and Coordinates. 3.2. Polynomial Vector Spaces. 3.3. Other Vector Spaces. 4. Diagonalization. 4.1. Eigenvalues and Eigenvectors. 4.2. Determinants. 4.3. Eigenspaces. 4.4. Diagonalization. 4.5. Change of Basis Matrices. 5. Computational Vector Geometry. 5.1. Length. 5.2. Orthogonality. 5.3. Orthogonal Projection. 5.4. Orthogonal Basis. A. Appendices. A.1. Complex Numbers. A.2. Mathematica. A.3. Solutions to Odd Exercises. Bibliography. Index.
Dr. Hannah Robbins is an associate professor of Mathematics at Roanoke College in Salem Virginia. Formerly a commutative algebraist, she now studies applications of linear algebra and assesses teaching practices in calculus. Outside the office she enjoys hiking and playing bluegrass bass.
![]() |
Ask a Question About this Product More... |
![]() |