Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
History of the Theory of ­Numbers, Volume 2
AMS Chelsea Publishing

Rating
Format
Hardback
Published
United States, 30 May 1999
Hurry - Only 2 left in stock!

Dickson's History is truly a monumental account of the development of one of the oldest and most important areas of mathematics. It is remarkable today to think that such a complete history could even be conceived. That Dickson was able to accomplish such a feat is attested to by the fact that his History has become the standard reference for number theory up to that time. One need only look at later classics, such as Hardy and Wright, where Dickson's History is frequently cited, to see its importance. The book is divided into three volumes by topic. In scope, the coverage is encyclopedic, leaving very little out. It is interesting to see the topics being resuscitated today that are treated in detail in Dickson. The first volume of Dickson's History covers the related topics of divisibility and primality. It begins with a description of the development of our understanding of perfect numbers. Other standard topics, such as Fermat's theorems, primitive roots, counting divisors, the Mobius function, and prime numbers themselves are treated.
Dickson, in this thoroughness, also includes less workhorse subjects, such as methods of factoring, divisibility of factorials and properties of the digits of numbers. Concepts, results and citations are numerous. This second volume is a comprehensive treatment of Diophantine analysis. Besides the familiar cases of Diophantine equations, this rubric also covers partitions, representations as a sum of two, three, four or $n$ squares, Waring's problem in general and Hilbert's solution of it, and perfect squares in artihmetical and geometrical progressions. Of course, many important Diophantine equations, such as Pell's equation, and classes of equations, such as quadratic, cubic and quartic equations, are treated in detail. As usual with Dickson, the account is encyclopedic and the references are numerous. The last volume of Dickson's History is the most modern, covering quadratic and higher forms. The treatment here is more general than in Volume II, which, in a sense, is more concerned with special cases. Indeed, this volume chiefly presents methods of attacking whole classes of problems. Again, Dickson is exhaustive with references and citations.

Show more

Our Price
$445
Ships from UK Estimated delivery date: 28th May - 4th Jun from UK
  Include FREE SHIPPING on a Fishpond Premium Trial

Already Own It? Sell Yours
Buy Together
+
Buy together with Matching Theory at a great price!
Buy Together
$625

Product Description

Dickson's History is truly a monumental account of the development of one of the oldest and most important areas of mathematics. It is remarkable today to think that such a complete history could even be conceived. That Dickson was able to accomplish such a feat is attested to by the fact that his History has become the standard reference for number theory up to that time. One need only look at later classics, such as Hardy and Wright, where Dickson's History is frequently cited, to see its importance. The book is divided into three volumes by topic. In scope, the coverage is encyclopedic, leaving very little out. It is interesting to see the topics being resuscitated today that are treated in detail in Dickson. The first volume of Dickson's History covers the related topics of divisibility and primality. It begins with a description of the development of our understanding of perfect numbers. Other standard topics, such as Fermat's theorems, primitive roots, counting divisors, the Mobius function, and prime numbers themselves are treated.
Dickson, in this thoroughness, also includes less workhorse subjects, such as methods of factoring, divisibility of factorials and properties of the digits of numbers. Concepts, results and citations are numerous. This second volume is a comprehensive treatment of Diophantine analysis. Besides the familiar cases of Diophantine equations, this rubric also covers partitions, representations as a sum of two, three, four or $n$ squares, Waring's problem in general and Hilbert's solution of it, and perfect squares in artihmetical and geometrical progressions. Of course, many important Diophantine equations, such as Pell's equation, and classes of equations, such as quadratic, cubic and quartic equations, are treated in detail. As usual with Dickson, the account is encyclopedic and the references are numerous. The last volume of Dickson's History is the most modern, covering quadratic and higher forms. The treatment here is more general than in Volume II, which, in a sense, is more concerned with special cases. Indeed, this volume chiefly presents methods of attacking whole classes of problems. Again, Dickson is exhaustive with references and citations.

Show more
Product Details
EAN
9780821819388
ISBN
0821819380
Age Range
Other Information
Illustrations

Table of Contents

Part 1, Divisibility and Primality: Perfect, multiply perfect, and amicable numbers Formulas for the number and sum of divisors, problems of Fermat and Wallis Fermat's and Wilson's theorems, generalizations and converses; symmetric functions of $1, 2, dots, p-1$, modulo $p$ Residue of $(u^{p-1}-1)/p$ modulo $p$ Euler's $phi$-function, generalizations; Farey series Periodic decimal fractions; periodic fractions; factors of $10^{n}pm 1$ Primitive roots, exponents, indices, binomial congruences Higher congruences Divisibility of factorials and multinomial coefficients Sum and number of divisors Miscellaneous theorems on divisibility, greatest common divisor, least common multiple Criteria for divisibility by a given number Factor tables, lists of primes Methods of factoring Fermat numbers $F_{n}=2^{2^n}+1$ Factors of $a^{n}pm b^{n}$ Recurring series; Lucas' $u_{n}, v_{n}$ Theory of prime numbers Inversion of functions; Mobius' function $mu(n)$; numerical integrals and derivatives Properties of the digits of numbers Author index Subject index Part 2, Diophantine Analysis: Polygonal, pyramidal and figurate numbers Linear diophantine equations and congruences Partitions Rational right triangles Triangles, quadrilaterals, and tetrahedra Sum of two squares Sum of three squares Sum of four squares Sum of $n$ squares Number of solutions of quadratic congruences in $n$ unknowns Liouville's series of eighteen articles Pell equation; $ax^2 + bx +c$ made a square Further single equations of the second degree Squares in arithmetical or geometrical progression Two or more linear functions made squares Two quadratic functions of one or two unknowns made squares Systems of two equations of degree two Three or more quadratic functions of one or two unknowns made squares Systems of three or more equations of degree two in three or more unknowns Quadratic form made an $n$th power Equations of degree three Equations of degree four Equations of degree $n$ Sets of integers with equal sums of like powers Waring's problem and related results Fermat's last theorem, $ax^{r}+ by^{s} = cz^{t}$, and the congruence $x^n + y^nequiv z^npmod p$ Author index Subject index Part 3, Quadratic and Higher Forms: Reduction and equivalence of binary quadratic forms, representation of integers Explicit values of $x, y$ in $x^2 +Delta y^2 = g$ Composition of binary quadratic forms Orders and genera; their composition Irregular determinants Number of classes of binary quadratic forms with integral coefficients Binary quadratic forms whose coefficients are complex integers or integers of a field Number of classes of binary quadratic forms with complex integral coefficients Ternary quadratic forms Quaternary quadratic forms Quadratic forms in $n$ variables Binary cubic forms Cubic forms in three or more variables Forms of degree $ngeqq 4$ Binary Hermitian forms Hermitian forms in $n$ variables and their conjugates Bilinear forms, matrices, linear substitutions Representation by polynomials modulo $p$ Congruencial theory of forms Author index Subject index.

Show more
Review this Product
What our customers have to say
Ask a Question About this Product More...
 
Look for similar items by category
Home » Books » Science » Mathematics » Algebra » General
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling History of the Theory of Numbers, Volume 2 (AMS Chelsea Publishing) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top