Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Improving Abiotic Stress ­Tolerance in Plants
By M. Iqbal R. Khan (Edited by), Amarjeet Singh (Edited by), Péter Poór (Edited by)

Rating
Format
Hardback, 322 pages
Other Formats Available

Paperback : $82.05

Published
United Kingdom, 29 May 2020

Abiotic stresses such as drought, flooding, high or low temperatures, metal toxicity and salinity can hamper plant growth and development. Improving Abiotic Stress Tolerance in Plants explains the physiological and molecular mechanisms plants naturally exhibit to withstand abiotic stresses and outlines the potential approaches to enhance plant abiotic stress tolerance to extreme conditions. Synthesising developments in plant stress biology, the book offers strategies that can be used in breeding, genomic, molecular, physiological and biotechnological approaches that hold the potential to develop resilient plants and improve crop productivity worldwide.

Features

· Comprehensively explains molecular and physiological mechanism of multiple abiotic stress tolerance in plants

· Discusses recent advancements in crop abiotic stress tolerance mechanism and highlights strategies to develop abiotic stress tolerant genotypes for sustainability

· Stimulates synthesis of information for plant stress biology for biotechnological applications

· Presents essential information for large scale breeding and agricultural biotechnological programs for crop improvement

Written by a team of expert scientists, this book benefits researchers in the field of plant stress biology and is essential reading for graduate students and researchers generating stress tolerant crops through genetic engineering and plant breeding. It appeals to individuals developing sustainable agriculture through physiological and biotechnological applications.

Show more

Our Price
$480
Ships from UK Estimated delivery date: 18th Apr - 25th Apr from UK
  Include FREE SHIPPING on a Fishpond Premium Trial

Already Own It? Sell Yours
Product Description

Abiotic stresses such as drought, flooding, high or low temperatures, metal toxicity and salinity can hamper plant growth and development. Improving Abiotic Stress Tolerance in Plants explains the physiological and molecular mechanisms plants naturally exhibit to withstand abiotic stresses and outlines the potential approaches to enhance plant abiotic stress tolerance to extreme conditions. Synthesising developments in plant stress biology, the book offers strategies that can be used in breeding, genomic, molecular, physiological and biotechnological approaches that hold the potential to develop resilient plants and improve crop productivity worldwide.

Features

· Comprehensively explains molecular and physiological mechanism of multiple abiotic stress tolerance in plants

· Discusses recent advancements in crop abiotic stress tolerance mechanism and highlights strategies to develop abiotic stress tolerant genotypes for sustainability

· Stimulates synthesis of information for plant stress biology for biotechnological applications

· Presents essential information for large scale breeding and agricultural biotechnological programs for crop improvement

Written by a team of expert scientists, this book benefits researchers in the field of plant stress biology and is essential reading for graduate students and researchers generating stress tolerant crops through genetic engineering and plant breeding. It appeals to individuals developing sustainable agriculture through physiological and biotechnological applications.

Show more
Product Details
EAN
9780367136246
ISBN
0367136244
Publisher
Other Information
22 Tables, black and white; 60 Illustrations, black and white
Dimensions
25.4 x 17.8 centimetres (0.78 kg)

Table of Contents

Tentative Outline: Spectrum of Physiological and Molecular Responses in Plant Abiotic Stress Tolerance. Physiological, Genomics, and Breeding Approaches to Improve Abiotic Stress Tolerance. Genomics Approaches in Plant Stress Research. Reactive Oxygen Species. Antioxidants in Plant Abiotic Stress Tolerance. Glutathione. Phospholipase C in Abiotic Stress Triggered Lipid Signaling in Plants. Physiological Response of Phytohormones in Modulation. Role of Ethylene. Role of Jasmonates. Role of Nitric Oxide. Root Plasticity Under Low Phosphate Availability. Cold Stress in Rice and MiRNA Engineering. Importance of Plant Senescence. Role of Proline. Role of Sugars. Role of Silicon. Role of Glycine Betaine. Role of Epigenetic Chromatin Regulators. Utilization of Genetic Engineering Tools in Developing Abiotic Stress Tolerant Plants. Regulation of High Temperature. Regulation of Hypoxia. Regulation of Light. Regulation of UV. Regulation of Heavy Metal. Regulation of Ionizing Radiation. Regulation of Ozone. Role of Calcium Signaling. Role of Transcription Factors. Role of Protein Kinases. Role of Chaperons. Role of Proteinases. Role of Aquaporins. Role of Transporters. Future Perspective of Abiotic Stress Tolerance.

About the Author

Dr. M. Iqbal R. Khan is an Assistant Professor of Botany at Jamia Hamdard, New Delhi, India. His current research interests are elucidation physiological and molecular mechanisms associated with abiotic stress tolerance and looking for suitable QTLs/genes/metabolites and/or germplasm for developing breeding or gene editing pipelines. Working on the metabolism of plants under different abiotic stresses, Dr. Khan has found a significant role of phytohormones in the regulation of plant growth and development and have suggested that phytohormones play an important in controlling stress responses and interacts in coordination with each other for defense signal networking to fine tune tolerance mechanisms. He is also exploring the regulatory role of signalling molecules and their impact on nutrient homeostasis and source-sink relationship under abiotic stresses. Dr. Khan has published more than 45 journal articles, 07 book chapters and has edited four books (including this). He has been recognized as Young Scientist of the Year from Indian Society of Plant Physiology and Scientific and Environmental Research Institute, India and Junior Scientist of the Year from National Environmental Science Academy New Delhi, India. He has been guest editor of “Ethylene: A key regulatory molecule in plants" in Frontiers in Plant Science and currently editing a special issue in Frontiers in Plant Science on “Plant Responses to the Dark Scenario”.

Dr. Amarjeet Singh is a scientist and member of faculty at the National Institute of Plant Genome Research (NIPGR), New Delhi, India. He has undertaken several genomics and functional genomics studies to identify, understand the differential expression pattern at the whole genome level and functionally characterized crucial genes in rice and Arabidopsis. At NIPGR, his research group is interested in deciphering the signaling networks and molecular mechanism of abiotic stresses (drought, salinity, cold) tolerance, particularly those regulated by calcium and lipid signaling, in crop plants. Another major research focus of the group is to understand the molecular mechanism of nutrient (NPK) uptake, transport and homeostasis in crucial crop plants such as rice and chickpea. He has published about 20 research/review articles in highly reputed, peer-reviewed international journals. He has also published three book chapters in books by noted publishers and some short communications. For his significant contribution in the field of plant sciences and agriculture, he was awarded the prestigious Young Scientist Platinum Jubilee Award (2017) from National Academy of Sciences (NASI), and Pran Vohra Award (2018-19) from The Indian Science Congress Association (ISCA). He has also been conferred with several other national and international awards/honours/fellowships during his Ph.D. and post-doctoral research including SERB-DST Young Scientist award, Young Investigator Award-DBT, D.S. Kothari Post-doctoral Fellowship, Travel Award by American Society of Plant Biologists (ASPB), USA, Travel Award by CSIR-India.

Dr. Péter Poór is an assistant professor at the University of Szeged in Hungary. He is currently taking part in the education and research of Department of Plant Biology and taking lecturer on the following course: Plant Anatomy, Plant Cell Biology, Plant Physiology, Environmental Plant Biology, Plant Stress Physiology, and Photosynthesis. Due to the excellent educational activities, he has won the Golden Chalk Award. He has published more than 40 peer-reviewed journal articles and contributed to several book chapters. Besides these, he has been awarded by various honors and scholarships. He is associate editor and manuscript reviewer for several plant biology journals. Their current project is “Fine-tuning of plant defense in the dark: the role of salicylic acid, jasmonic acid, and ethylene”.

Show more
Review this Product
What our customers have to say
Ask a Question About this Product More...
 
Look for similar items by category
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Improving Abiotic Stress Tolerance in Plants on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top