Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Machine Learning in ­Translation

Rating
Format
Hardback, 206 pages
Other Formats Available

Paperback : $57.36

Published
United Kingdom, 12 April 2023

Machine Learning in Translation introduces machine learning (ML) theories and technologies that are most relevant to translation processes, approaching the topic from a human perspective and emphasizing that ML and ML-driven technologies are tools for humans.

Providing an exploration of the common ground between human and machine learning and of the nature of translation that leverages this new dimension, this book helps linguists, translators, and localizers better find their added value in a ML-driven translation environment. Part One explores how humans and machines approach the problem of translation in their own particular ways, in terms of word embeddings, chunking of larger meaning units, and prediction in translation based upon the broader context. Part Two introduces key tasks, including machine translation, translation quality assessment and quality estimation, and other Natural Language Processing (NLP) tasks in translation. Part Three focuses on the role of data in both human and machine learning processes. It proposes that a translator's unique value lies in the capability to create, manage, and leverage language data in different ML tasks in the translation process. It outlines new knowledge and skills that need to be incorporated into traditional translation education in the machine learning era. The book concludes with a discussion of human-centered machine learning in translation, stressing the need to empower translators with ML knowledge, through communication with ML users, developers, and programmers, and with opportunities for continuous learning.

This accessible guide is designed for current and future users of ML technologies in localization workflows, including students on courses in translation and localization, language technology, and related areas. It supports the professional development of translation practitioners, so that they can fully utilize ML technologies and design their own human-centered ML-driven translation workflows and NLP tasks.

Show more

Our Price
$220
Ships from NZ Estimated delivery date: 19th May - 22nd May from NZ
Price includes delivery.
(Excl. RD)

Already Own It? Sell Yours
Buy Together
+
Buy together with Machine Learning Contests at a great price!
Buy Together
$345

Product Description

Machine Learning in Translation introduces machine learning (ML) theories and technologies that are most relevant to translation processes, approaching the topic from a human perspective and emphasizing that ML and ML-driven technologies are tools for humans.

Providing an exploration of the common ground between human and machine learning and of the nature of translation that leverages this new dimension, this book helps linguists, translators, and localizers better find their added value in a ML-driven translation environment. Part One explores how humans and machines approach the problem of translation in their own particular ways, in terms of word embeddings, chunking of larger meaning units, and prediction in translation based upon the broader context. Part Two introduces key tasks, including machine translation, translation quality assessment and quality estimation, and other Natural Language Processing (NLP) tasks in translation. Part Three focuses on the role of data in both human and machine learning processes. It proposes that a translator's unique value lies in the capability to create, manage, and leverage language data in different ML tasks in the translation process. It outlines new knowledge and skills that need to be incorporated into traditional translation education in the machine learning era. The book concludes with a discussion of human-centered machine learning in translation, stressing the need to empower translators with ML knowledge, through communication with ML users, developers, and programmers, and with opportunities for continuous learning.

This accessible guide is designed for current and future users of ML technologies in localization workflows, including students on courses in translation and localization, language technology, and related areas. It supports the professional development of translation practitioners, so that they can fully utilize ML technologies and design their own human-centered ML-driven translation workflows and NLP tasks.

Show more
Product Details
EAN
9781032343228
ISBN
1032343222
Other Information
9 Tables, black and white; 24 Line drawings, black and white; 24 Illustrations, black and white
Dimensions
23.4 x 15.6 x 1.4 centimetres (0.49 kg)

Table of Contents

List of figures and tables

Introduction

PART I - HUMAN AND MACHINE APPROACHES TO TRANSLATION

1. Convergence of two approaches to translation

2. Levels of analysis

3. Predicative language models

PART II - MACHINE LEARNING TASKS IN TRANSLATION 4. Machine translation

5. Machine translation quality assessment and quality estimation

6. Intentionality and NLP tasks in translation

PART III - DATA IN HUMAN AND MACHINE LEARNING 7. Translation-computer interaction through language data

8. Balancing machine and human learning in translation

9. Impact of machine learning on translator education

Epilogue – Human-centered machine learning in translation

References

Index

About the Author

Peng Wang is a freelance conference interpreter with the Translation Bureau, Public Works and Government Services Canada, a part-time professor in the School of Translation and Interpretation, University of Ottawa and Course designer and instructor for Think NLP and Machine Translation Masterclass at the Localization Institute. She has published two books in Chinese, including Harry Potter and Its Chinese Translation.

David B. Sawyer is Director of Language Testing at the U.S. State Department’s Foreign Service Institute and a Senior Lecturer at the University of Maryland, USA. He is the author of Foundations of Interpreter Education: Curriculum and Assessment and co-editor of The Evolving Curriculum in Interpreter and Translator Education: Stakeholder Perspectives and Voices (both John Benjamins).

Reviews

"Machine Learning in Translation by Wang and Sawyer offers a new and important perspective on the topic by discussing machine learning concepts from a linguistic perspective. They offer an entryway to an in-depth understanding of machine learning concepts for linguists, closing a long-existing gap in literature suitable for machine learning education for this audience."Tabea De Wille, University of Limerick, Ireland

Show more
Review this Product
What our customers have to say
Ask a Question About this Product More...
 
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Machine Learning in Translation on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!

Back to top