Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Mathematical Programming and­ Control Theory (Chapman ­and Hall Mathematics Series­
Closed)

Rating
Format
Paperback, 164 pages
Published
United Kingdom, 1 October 1978

In a mathematical programming problem, an optimum (maxi­ mum or minimum) of a function is sought, subject to con­ straints on the values of the variables. In the quarter century since G. B. Dantzig introduced the simplex method for linear programming, many real-world problems have been modelled in mathematical programming terms. Such problems often arise in economic planning - such as scheduling industrial production or transportation - but various other problems, such as the optimal control of an interplanetary rocket, are of similar kind. Often the problems involve nonlinear func­ tions, and so need methods more general than linear pro­ gramming. This book presents a unified theory of nonlinear mathe­ matical programming. The same methods and concepts apply equally to 'nonlinear programming' problems with a finite number of variables, and to 'optimal control' problems with e. g. a continuous curve (i. e. infinitely many variables). The underlying ideas of vector space, convex cone, and separating hyperplane are the same, whether the dimension is finite or infinite; and infinite dimension makes very little difference to the proofs. Duality theory - the various nonlinear generaliz­ ations of the well-known duality theorem of linear program­ ming - is found relevant also to optimal control, and the , PREFACE Pontryagin theory for optimal control also illuminates finite dimensional problems. The theory is simplified, and its applicability extended, by using the geometric concept of convex cones, in place of coordinate inequalities.

Show more

Our Price
$120
Ships from UK Estimated delivery date: 21st Apr - 28th Apr from UK
  Include FREE SHIPPING on a Fishpond Premium Trial

Already Own It? Sell Yours
Buy Together
+
Buy together with The Subways and Tunnels of New York Methods and Costs at a great price!
Buy Together
$192.93

Product Description

In a mathematical programming problem, an optimum (maxi­ mum or minimum) of a function is sought, subject to con­ straints on the values of the variables. In the quarter century since G. B. Dantzig introduced the simplex method for linear programming, many real-world problems have been modelled in mathematical programming terms. Such problems often arise in economic planning - such as scheduling industrial production or transportation - but various other problems, such as the optimal control of an interplanetary rocket, are of similar kind. Often the problems involve nonlinear func­ tions, and so need methods more general than linear pro­ gramming. This book presents a unified theory of nonlinear mathe­ matical programming. The same methods and concepts apply equally to 'nonlinear programming' problems with a finite number of variables, and to 'optimal control' problems with e. g. a continuous curve (i. e. infinitely many variables). The underlying ideas of vector space, convex cone, and separating hyperplane are the same, whether the dimension is finite or infinite; and infinite dimension makes very little difference to the proofs. Duality theory - the various nonlinear generaliz­ ations of the well-known duality theorem of linear program­ ming - is found relevant also to optimal control, and the , PREFACE Pontryagin theory for optimal control also illuminates finite dimensional problems. The theory is simplified, and its applicability extended, by using the geometric concept of convex cones, in place of coordinate inequalities.

Show more
Product Details
EAN
9780412155000
ISBN
0412155001
Dimensions
21.6 x 14 x 1 centimetres (0.23 kg)

Promotional Information

Springer Book Archives

Table of Contents

1 Optimization problems; introduction.- 1.1 Introduction.- 1.2 Transportation network.- 1.3 Production allocation model.- 1.4 Decentralized resource allocation.- 1.5 An inventory model.- 1.6 Control of a rocket.- 1.7 Mathematical formulation.- 1.8 Symbols and conventions.- 1.9 Differentiability.- 1.10 Abstract version of an optimal control problem.- References.- 2 Mathematical techniques.- 2.1 Convex geometry.- 2.2 Convex cones and separation theorems.- 2.3 Critical points.- 2.4 Convex functions.- 2.5 Alternative theorems.- 2.6 Local solvability and linearization.- References.- 3 Linear systems.- 3.1 Linear systems.- 3.2 Lagrangean and duality theory.- 3.3 The simplex method.- 3.4 Some extensions of the simplex method.- References.- 4 Lagrangean theory.- 4.1 Lagrangean theory and duality.- 4.2 Convex nondifferentiable problems.- 4.3 Some applications of convex duality theory.- 4.4 Differentiable problems.- 4.5 Sufficient Lagrangean conditions.- 4.6 Some applications of differentiable Lagrangean theory.- 4.7 Duality for differentiable problems.- 4.8 Converse duality.- References.- 5 Pontryagin theory.- 5.1 Introduction.- 5.2 Abstract Hamiltonian theory.- 5.3 Pointwise theorems.- 5.4 Problems with variable endpoint.- References.- 6 Fractional and complex programming.- 6.1 Fractional programming.- 6.2 Linear fractional programming.- 6.3 Nonlinear fractional programming.- 6.4 Algorithms for fractional programming.- 6.5 Optimization in complex spaces.- 6.6 Symmetric duality.- References.- 7 Some algorithms for nonlinear optimization.- 7.1 Introduction.- 7.2 Unconstrained minimization.- 7.3 Sequential unconstrained minimization.- 7.4 Feasible direction and projection methods.- 7.5 Lagrangean methods.- 7.6 Quadratic programming by Beale’s method.- 7.7 Decomposition.-References.- Appendices.- A.1 Local solvability.- A.2 On separation and Farkas theorems.- A.3 A zero as a differentiable function.- A.4 Lagrangean conditions when the cone has empty interior.- A.5 On measurable functions.- A.6 Lagrangean theory with weaker derivatives.- A.7 On convex functions.

Show more
Review this Product
What our customers have to say
Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Mathematical Programming and Control Theory (Chapman and Hall Mathematics Series (Closed)) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top