Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Multiscale Modeling
A Bayesian Perspective (Springer Series in Statistics)

Rating
Format
Hardback, 245 pages
Other Formats Available

Paperback : $240.00

Published
United States, 27 July 2007

A wide variety of processes occur on multiple scales, either naturally or as a consequence of measurement. This book contains methodology for the analysis of data that arise from such multiscale processes. The book brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. The Bayesian approach also facilitates the use of knowledge from prior experience or data, and these methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.

The book is aimed at statisticians, applied mathematicians, and engineers working on problems dealing with multiscale processes in time and/or space, such as in engineering, finance, and environmetrics. The book will also be of interest to those working on multiscale computation research. The main prerequisites are knowledge of Bayesian statistics and basic Markov chain Monte Carlo methods. A number of real-world examples are thoroughly analyzed in order to demonstrate the methods and to assist the readers in applying these methods to their own work. To further assist readers, the authors are making source code (for R) available for many of the basic methods discussed herein.

Show more

Our Price
$240
Ships from UK Estimated delivery date: 3rd Apr - 10th Apr from UK
  Include FREE SHIPPING on a Fishpond Premium Trial

Already Own It? Sell Yours
Buy Together
+
Buy together with Modeling Spatio-Temporal Data at a great price!
Buy Together
$444
Elsewhere Price
$522
You Save $78 (15%)

Product Description

A wide variety of processes occur on multiple scales, either naturally or as a consequence of measurement. This book contains methodology for the analysis of data that arise from such multiscale processes. The book brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. The Bayesian approach also facilitates the use of knowledge from prior experience or data, and these methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.

The book is aimed at statisticians, applied mathematicians, and engineers working on problems dealing with multiscale processes in time and/or space, such as in engineering, finance, and environmetrics. The book will also be of interest to those working on multiscale computation research. The main prerequisites are knowledge of Bayesian statistics and basic Markov chain Monte Carlo methods. A number of real-world examples are thoroughly analyzed in order to demonstrate the methods and to assist the readers in applying these methods to their own work. To further assist readers, the authors are making source code (for R) available for many of the basic methods discussed herein.

Show more
Product Details
EAN
9780387708973
ISBN
0387708979
Publisher
Other Information
Illustrated
Dimensions
23.5 x 16.4 x 1.7 centimetres (0.56 kg)

Table of Contents

Models for Spatial Data.- Illustrative Example.- Convolutions and Wavelets.- Convolution Methods.- Wavelet Methods.- Explicit Multiscale Models.- Overview of Explicit Multiscale Models.- Gaussian Multiscale Models on Trees.- Hidden Markov Models on Trees.- Mass-Balanced Multiscale Models on Trees.- Multiscale Random Fields.- Multiscale Time Series.- Change of Support Models.- Implicit Multiscale Models.- Implicit Computationally Linked Model Overview.- Metropolis-Coupled Methods.- Genetic Algorithms.- Case Studies.- Soil Permeability Estimation.- Single Photon Emission Computed Tomography Example.- Conclusions.

Reviews

From the reviews: "Readership: Students and practitioners of Multiscale Modeling and Analysis by Bayesian methods.… This is a wonderfully written review of what is known about multiscale modelling and associated Bayesian inference.… The models are very clearly described and discussed with a lot of insight. The computational details are also discussed well. The book is very well written… ." (Jayanta K. Ghosh, International Statistical Review, Vol. 76 (1), 2008) "In general, the book discusses various statistical tools, which can be used to link the information at different scales and assess the associated uncertainties. Approaches to speed up the computations are also presented. The basic computer codes for many of the methods discussed in the book are made available through the website of one of the authors. This is a very good introductory book for nonexperts as well as for experts working in this field." (Yalchin Efendiev, Journal of the American Statistical Association, March 2009, Vol. 104, No. 485) “A multitude of natural processes occur in multiple scales giving rise to complicated phenomenon often modeled by processes, algorithms, and data structured by scale. However, a ‘real’ book that summarizes these for a wider audience, particularly geostatisticians, has been lacking. I personally thank Professors Ferreira and Lee for filling this void with this commendable book, a nicely organized exploration of multiscale methods developed using a Bayesian paradigm. … Multiscale Modeling: A Bayesian Perspective is not really a textbook… . It is more like an advanced-level reference book for graduate students and geostatistical researchers interested in learning about the advances in this field. For any PhD-level graduate statistics course in advanced multiscale models, this book…is automatically the book of choice. The detailed theoretical exposition of the methods, motivating examples forillustration, easy-to-understand R programs, and other features will enable any instructor to introduce the topic in the classroom setting. Several Chapters can provide sufficient insight to choose a PhD dissertation topic. The extensive bibliography at the end of the book will complement the learning curve. The book is a seminal work in this direction, the first of its kind, and I highly recommend it.” (Technometrics, May 2010, Vol. 52, No. 2)

Show more
Review this Product
What our customers have to say
Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Multiscale Modeling: A Bayesian Perspective (Springer Series in Statistics) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top