Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
System-on-Chip Architectures ­and Implementations for ­Private-Key Data Encryption

Rating
Format
Hardback, 160 pages
Other Formats Available

Paperback : $239.00

Published
United States, 1 August 2003

In System-on-Chip Architectures and Implementations for Private-Key Data Encryption, new generic silicon architectures for the DES and Rijndael symmetric key encryption algorithms are presented. The generic architectures can be utilised to rapidly and effortlessly generate system-on-chip cores, which support numerous application requirements, most importantly, different modes of operation and encryption and decryption capabilities. In addition, efficient silicon SHA-1, SHA-2 and HMAC hash algorithm architectures are described. A single-chip Internet Protocol Security (IPSec) architecture is also presented that comprises a generic Rijndael design and a highly efficient HMAC-SHA-1 implementation.



In the opinion of the authors, highly efficient hardware implementations of cryptographic algorithms are provided in this book. However, these are not hard-fast solutions. The aim of the book is to provide an excellent guide to the design and development process involved in the translation from encryption algorithm to silicon chip implementation.


1 Background Theory.- 1.1. Introduction.- 1.2. Cryptographic Algorithms.- 1.3. Cryptanalysis.- 1.4. Hardware-Based Cryptographic Implementation.- 1.5. AES Development Effort.- 1.6. Rijndael Algorithm Finite Field Mathematics.- 1.7. Conclusions.- 2 Des Algorithm Architectures and Implementations.- 2.1. Introduction.- 2.2. DES Algorithm Description.- 2.3. DES Modes of Operation.- 2.4. Triple-DES.- 2.5. Review of Previous Work.- 2.6. Generic Parameterisable DES IP Architecture Design.- 2.7. Novel Key Scheduling Method.- 2.8. Conclusions.- 3 Rijndael Architectures and Implementations.- 3.1. Introduction.- 3.2. Rijndael Algorithm Description.- 3.3. Review of Rijndael Hardware Implementations.- 3.4. Design of High Speed Rijndael Encryptor Core.- 3.5. Encryptor/Decryptor Core.- 3.6. Performance Results.- 3.7. Conclusions.- 4 Further Rijndael Algorithm Architectures and Implementations.- 4.1. Introduction.- 4.2. Look-Up Table Based Rijndael Architecture.- 4.3. Rijndael Modes of Operation.- 4.4. Overall Generic AES Architecture.- 4.5. Conclusions.- 5 Hash Algorithms and Security Applications.- 5.1. Introduction.- 5.2. Internet Protocol Security (IPSec).- 5.3. IPSec Authentication Algorithms.- 5.4. IPSec Cryptographic Processor Design.- 5.5. Performance Results.- 5.6. IPSec Cryptographic Processor Use in Other Applications.- 5.7. SHA-384/SHA-512 Processor.- 5.8. Conclusions.- 6 Concluding Summary and Future Work.- 6.1. Concluding Summary.- 6.2. Future work.- Appendix A - Modulo Arithmetic.- Appendix B - DES Algorithm Permutations and S-Boxes.- Appendix C - LUTs Utilised in Rijndael Algorithm.- Appendix D - LUTs in LUT-Based Rijndael Architecture.- Appendix E - SHA-384/SHA-512 Constants.- References.

Show more

Our Price
$239
Ships from UK Estimated delivery date: 22nd Apr - 29th Apr from UK
  Include FREE SHIPPING on a Fishpond Premium Trial

Already Own It? Sell Yours
Buy Together
$478

Product Description

In System-on-Chip Architectures and Implementations for Private-Key Data Encryption, new generic silicon architectures for the DES and Rijndael symmetric key encryption algorithms are presented. The generic architectures can be utilised to rapidly and effortlessly generate system-on-chip cores, which support numerous application requirements, most importantly, different modes of operation and encryption and decryption capabilities. In addition, efficient silicon SHA-1, SHA-2 and HMAC hash algorithm architectures are described. A single-chip Internet Protocol Security (IPSec) architecture is also presented that comprises a generic Rijndael design and a highly efficient HMAC-SHA-1 implementation.



In the opinion of the authors, highly efficient hardware implementations of cryptographic algorithms are provided in this book. However, these are not hard-fast solutions. The aim of the book is to provide an excellent guide to the design and development process involved in the translation from encryption algorithm to silicon chip implementation.


1 Background Theory.- 1.1. Introduction.- 1.2. Cryptographic Algorithms.- 1.3. Cryptanalysis.- 1.4. Hardware-Based Cryptographic Implementation.- 1.5. AES Development Effort.- 1.6. Rijndael Algorithm Finite Field Mathematics.- 1.7. Conclusions.- 2 Des Algorithm Architectures and Implementations.- 2.1. Introduction.- 2.2. DES Algorithm Description.- 2.3. DES Modes of Operation.- 2.4. Triple-DES.- 2.5. Review of Previous Work.- 2.6. Generic Parameterisable DES IP Architecture Design.- 2.7. Novel Key Scheduling Method.- 2.8. Conclusions.- 3 Rijndael Architectures and Implementations.- 3.1. Introduction.- 3.2. Rijndael Algorithm Description.- 3.3. Review of Rijndael Hardware Implementations.- 3.4. Design of High Speed Rijndael Encryptor Core.- 3.5. Encryptor/Decryptor Core.- 3.6. Performance Results.- 3.7. Conclusions.- 4 Further Rijndael Algorithm Architectures and Implementations.- 4.1. Introduction.- 4.2. Look-Up Table Based Rijndael Architecture.- 4.3. Rijndael Modes of Operation.- 4.4. Overall Generic AES Architecture.- 4.5. Conclusions.- 5 Hash Algorithms and Security Applications.- 5.1. Introduction.- 5.2. Internet Protocol Security (IPSec).- 5.3. IPSec Authentication Algorithms.- 5.4. IPSec Cryptographic Processor Design.- 5.5. Performance Results.- 5.6. IPSec Cryptographic Processor Use in Other Applications.- 5.7. SHA-384/SHA-512 Processor.- 5.8. Conclusions.- 6 Concluding Summary and Future Work.- 6.1. Concluding Summary.- 6.2. Future work.- Appendix A - Modulo Arithmetic.- Appendix B - DES Algorithm Permutations and S-Boxes.- Appendix C - LUTs Utilised in Rijndael Algorithm.- Appendix D - LUTs in LUT-Based Rijndael Architecture.- Appendix E - SHA-384/SHA-512 Constants.- References.

Show more
Product Details
EAN
9780306478826
ISBN
030647882X
Publisher
Other Information
biography
Dimensions
23.8 x 15.1 x 0.7 centimetres (0.96 kg)

Promotional Information

Springer Book Archives

Table of Contents

1 Background Theory.- 1.1. Introduction.- 1.2. Cryptographic Algorithms.- 1.3. Cryptanalysis.- 1.4. Hardware-Based Cryptographic Implementation.- 1.5. AES Development Effort.- 1.6. Rijndael Algorithm Finite Field Mathematics.- 1.7. Conclusions.- 2 Des Algorithm Architectures and Implementations.- 2.1. Introduction.- 2.2. DES Algorithm Description.- 2.3. DES Modes of Operation.- 2.4. Triple-DES.- 2.5. Review of Previous Work.- 2.6. Generic Parameterisable DES IP Architecture Design.- 2.7. Novel Key Scheduling Method.- 2.8. Conclusions.- 3 Rijndael Architectures and Implementations.- 3.1. Introduction.- 3.2. Rijndael Algorithm Description.- 3.3. Review of Rijndael Hardware Implementations.- 3.4. Design of High Speed Rijndael Encryptor Core.- 3.5. Encryptor/Decryptor Core.- 3.6. Performance Results.- 3.7. Conclusions.- 4 Further Rijndael Algorithm Architectures and Implementations.- 4.1. Introduction.- 4.2. Look-Up Table Based Rijndael Architecture.- 4.3. Rijndael Modes of Operation.- 4.4. Overall Generic AES Architecture.- 4.5. Conclusions.- 5 Hash Algorithms and Security Applications.- 5.1. Introduction.- 5.2. Internet Protocol Security (IPSec).- 5.3. IPSec Authentication Algorithms.- 5.4. IPSec Cryptographic Processor Design.- 5.5. Performance Results.- 5.6. IPSec Cryptographic Processor Use in Other Applications.- 5.7. SHA-384/SHA-512 Processor.- 5.8. Conclusions.- 6 Concluding Summary and Future Work.- 6.1. Concluding Summary.- 6.2. Future work.- Appendix A - Modulo Arithmetic.- Appendix B - DES Algorithm Permutations and S-Boxes.- Appendix C - LUTs Utilised in Rijndael Algorithm.- Appendix D - LUTs in LUT-Based Rijndael Architecture.- Appendix E - SHA-384/SHA-512 Constants.- References.

Reviews

From the reviews: "Security has become a very critical issue in the provision of mobile services. The demands for effective and secure communications in wireless networks are especially notable in the electronics area. ! This is an easy book to read. It focuses on efficient hardware implementation for private key algorithms. ... From the technical point of view, the book is very good, with enough explanations and solution trade-offs." (IEEE Circuits & Devices Magazine, Vol. 21 (6), 2005)

Show more
Review this Product
What our customers have to say
Ask a Question About this Product More...
 
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling System-on-Chip Architectures and Implementations for Private-Key Data Encryption on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top