Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Time Series
Modeling, Computation, and Inference, Second Edition (Chapman & Hall/CRC Texts in Statistical Science)
By Prado, Raquel (University of California, Santa Cruz, USA), Ferreira, Marco A. R. (Virginia Tech, Blacksburg, USA), Mike West

Rating
Format
Hardback, 452 pages
Other Formats Available

Paperback : $95.97

Published
United States, 27 July 2021

Focusing on Bayesian approaches and computations using analytic and simulation-based methods for inference, Time Series: Modeling, Computation, and Inference, Second Edition integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling, analysis and forecasting, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and contacts research frontiers in multivariate time series modeling and forecasting.

It presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. It explores the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian formulations and computation, including use of computations based on Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. It illustrates the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, environmental science, and finance.

Along with core models and methods, the book represents state-of-the art approaches to analysis and forecasting in challenging time series problems. It also demonstrates the growth of time series analysis into new application areas in recent years, and contacts recent and relevant modeling developments and research challenges.

New in the second edition:

  • Expanded on aspects of core model theory and methodology.
  • Multiple new examples and exercises.
  • Detailed development of dynamic factor models.
  • Updated discussion and connections with recent and current research frontiers.

Show more

Our Price
$170
Ships from NZ Estimated delivery date: 16th Apr - 21st Apr from NZ
Price includes delivery.
(Excl. RD)

Already Own It? Sell Yours
Buy Together
+
Buy together with Blacksburg at a great price!
Buy Together
$214.27

Product Description

Focusing on Bayesian approaches and computations using analytic and simulation-based methods for inference, Time Series: Modeling, Computation, and Inference, Second Edition integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling, analysis and forecasting, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and contacts research frontiers in multivariate time series modeling and forecasting.

It presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. It explores the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian formulations and computation, including use of computations based on Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. It illustrates the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, environmental science, and finance.

Along with core models and methods, the book represents state-of-the art approaches to analysis and forecasting in challenging time series problems. It also demonstrates the growth of time series analysis into new application areas in recent years, and contacts recent and relevant modeling developments and research challenges.

New in the second edition:

Show more
Product Details
EAN
9781498747028
ISBN
1498747027
Other Information
1 Tables, black and white; 116 Line drawings, black and white; 116 Illustrations, black and white
Dimensions
23.6 x 15.5 x 2.8 centimetres (0.85 kg)

Table of Contents

1. Notation, definitions, and basic inference
2. Traditional time domain models
3. The frequency domain
4. Dynamic linear models
5. State-space TVAR models
6. SMC methods for state-space models
7. Mixture models in time series
8. Topics and examples in multiple time series
9. Vector AR and ARMA models
10. General classes of multivariate dynamic models
11. Latent factor models

About the Author

Raquel Prado is Professor in the Department of Statistics at the Baskin School of Engineering of the University of California Santa Cruz, USA. Her main research areas are time series analysis and Bayesian modeling - with a focus on analysis of large-dimensional nonstationary time series data and applications to biomedical signal processing and brain imaging. Marco A. R. Ferreira is an Associate Professor in the Department of Statistics at Virginia Tech, where he served from 2016 to 2020 as the Director of Graduate Programs. Mike West holds a Duke University distinguished chair as the Arts & Sciences Professor of Statistics & Decision Sciences in the Department of Statistical Science, where he led the development of statistics from 1990-2002.

Show more
Review this Product
What our customers have to say
Ask a Question About this Product More...
 
Look for similar items by category
Home » Books » Science » Mathematics » Statistics » General
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Time Series: Modeling, Computation, and Inference, Second Edition (Chapman & Hall/CRC Texts in Statistical Science) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!

Back to top